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Abstract

Previous studies performed in our laboratory have measured the effect of atrazine exposure on cytochrome P450-dependent mono-
oxygenase activity and have found increased activity in midge larvae (Chironomus tentans) as a result of atrazine exposure (1–
10 ppm). Here we report the cloning and expression of a specific C. tentans CYP4 gene that is responsive to atrazine induction with
an open reading frame of 1678 bp which encodes a putative protein of 559 amino acid residues. Alignments of deduced amino acid
sequences with other insect P450 genes and phylogenetic analysis indicated a high degree of similarity to other insect CYP4 genes. North-
ern blotting analysis employing a fragment of 1200 bp from the CYP4 gene as a probe indicated that the CYP4 gene was expressed in all
developmental stages, but was expressed at highest levels in late instar larvae. Additionally, over-expression of CYP4 in C. tentans

exposed to atrazine (10 mg/l) confirms the ability of atrazine to induce specific P450 genes and provides insight into potential conse-
quences of atrazine exposure in aquatic organisms.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Cytochrome P450 (CYP)-dependent microsomal mon-
oxygenases constitute the largest gene superfamily found
in nature. The cytochrome P450 enzyme system has been
detected in virtually all organisms examined from bacteria
to mammals [1]. These enzymes constitute an extremely
important metabolic system because of their involvement
in regulating the titers of endogenous compounds such as
hormones, fatty acids, and steroids. Additionally, this
enzyme system plays a central role in the metabolism of
xenobiotics such as drugs, pesticides, and plant toxins [1].

In insects, cytochrome P450 involvement in metabolism
of insecticides results in either bio-activation or, more fre-

quently, in detoxification, the latter process being enhanced
in many insect species that have developed metabolic resis-
tance to insecticides. Additionally, cytochrome P450 is
inducible through a mechanism shown to be largely con-
trolled at the transcriptional level [2]. The net result of
induction is often observed simply as an increase in enzyme
activity. The ecological and physiological significance of
induction is uncertain, although with insects, induction is
thought to provide versatility in environmental adaptation
[3] and may be a protective mechanism whereby the organ-
ism can detoxify lipophilic compounds that might otherwise
accumulate to potentially toxic levels within cells [4].

The presence of an inducible cytochrome P450 system has
been established in a number of different insects [5]. Given
the importance of this enzyme system in both activation
and detoxification of xenobiotics, induction may play a role
in chemical interactions. Several recent studies have shown
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that in larvae of the midge, Chironomus tentans (Fabricius)
(Diptera: Chironomidae), simultaneous exposure to the
triazine herbicide, atrazine and selected organophosphate
insecticides caused greater-than-additive toxicity [6–8].
Body residue analysis of midge larvae exposed in vivo to
atrazine and chlorpyrifos mixtures indicated that chlorpyri-
fos was metabolized more rapidly in atrazine-treated midges
compared to unexposed controls [7]. Importantly, in vivo
metabolism of chlorpyrifos by treated and control midges
indicated that the toxic metabolite, chlorpyrifos oxon, was
formed more rapidly in atrazine-exposed midges [7].

These results strongly suggest that although atrazine is
not acutely toxic, it may act as an inducer of cytochrome
P450 activity. We have measured the effect of atrazine
exposure on cytochrome P450-dependent monooxygenase
activities including aldrin epoxidase [9] and O-demethylase
[10] and observed increased activity in both assays as a
result of atrazine exposure. A 45 kDa protein of increased
intensity was also observed after SDS–PAGE of micro-
somal protein which was similar in size to cytochrome
P450 enzymes reported for other insects. Heme staining
of SDS–PAGE gels and immunochemical studies using a
Drosophila melanogaster anti-P450 polyclonal antiserum
further supported the cytochrome P450 nature of this
inducible 45 kDa protein. A region of a cytochrome P450
family 4 gene was amplified using degenerate primers and
sequenced from C. tentans larvae, and Northern blot anal-
ysis employing the CYP4 gene fragment as a probe indi-
cated over-expression in larvae exposed to atrazine [10].

Atrazine is a herbicide that belongs to a group of pesti-
cides used widely throughout the Midwestern U.S. and has
been commonly reported as a contaminant of surface
waters [11]. Although a biochemical understanding of atra-
zine induction of P450 enzymes in C. tentans and its poten-
tial to interact with other aquatic contaminants is
emerging, specific P450 genes and gene products that are
induced by atrazine have yet to be identified. In this man-
uscript, we describe the cloning, expression, and phyloge-
netic analysis of a novel atrazine-inducible family 4
cytochrome P450 from C. tentans.

2. Materials and methods

2.1. Insect population

A colony of C. tentans was obtained from Wichita State
University, Department of Biological Sciences, and main-
tained according to U.S. EPA protocols [12] for static cul-
tures with the slight modification that cultures were
maintained with a mixture of developmental stages.

2.2. Atrazine exposure

Midge larvae were exposed to atrazine by maintaining
groups of 50 third instars in 1 l of moderately hard water
in glass beakers at room temperature (20–22 �C) and
ambient lighting. Approximately 2 cm of sand was added

to each beaker prior to introducing midges. An experi-
ment consisted of control (without atrazine) and three
experimental beakers with atrazine at 10 mg/l. After
acclimation of midges for 24 h, 1 ml of technical grade
atrazine (99% purity), purchased from Chem Service
(West Chester, PA, USA) in ethyl acetate was added to
the experimental beakers to achieve a concentration cor-
responding 10 mg/l. Control treatments consisted of
beakers treated with 1 ml of ethyl acetate. After 90 h
of exposure, the midges were collected from each beaker
for RNA isolation.

2.3. RNA isolation

Total RNA was isolated using TRIzol Reagent from
Invitrogen Life Technologies (Carlsbad, CA). C. tentans

first, second, and third instar larvae, pupae and adult tis-
sue (�100 mg/each) were ground in liquid N2 and pro-
cessed with TRIzol to generate total RNA according to
manufacturer instructions. The final RNA pellet was dis-
solved in 50 ll of distilled, autoclaved water. Extracted
RNA was diluted in Tris–HCl buffer (5 mM, pH 8.0),
quantified spectrophotometrically using the absorbance
ratio >1.8 at 260/280 nm [13] and stored at �80 �C until
further use.

2.4. RACE PCR, cloning and sequence analysis

Total RNA was used for RACE PCR (Rapid Amplifica-
tion of cDNA ends) reactions. The SMART RACE cDNA
Amplification kit (BD Biosciences, San Diego, CA) was
used according to the manufacturer’s instructions for both
5 0 and 3 0 RACE reactions. The PCRs were performed with
oligonucleotide primers designed from the atrazine-induc-
ible CYP4 fragment previously described from C. tentans

[10]. The following CYP4G33 gene-specific primers were
used for the initial 5 0 RACE and 3 0 RACE reactions,
respectively: 5 0-ATAATGATTGTTGTGCCTGCTGG-3 0

and 5 0-TCCAGCAGGCACAACAATCATTA-3 0, both
paired separately with the universal primer A mix (UPM)
provided in the SMART RACE cDNA amplification kit.
Following amplification, RACE products were separated
on a 1% agarose gel. Products were excised from the gel
and purified using a QIAquick gel extraction kit (QIAgen,
Valencia, CA). Isolated fragments were cloned into the vec-
tor pCR2.1 TOPO (Invitrogen, Carlsbad, CA). Positive
clones were sequenced at the Iowa State University DNA
sequencing facility. By merging the overlapping sequences
from the 3 0 and 5 0 reactions, a putative full-length cDNA
was generated. Sequence analyses of gene fragments
were repeated at least three times with different RNA
preparations.

To confirm that the sequences generated by RACE PCR
were from the same gene, nearly the full-length cDNA was
amplified using gene-specific primers (Fig. 1) complemen-
tary to the 5 0- and 3 0 ends of the cDNA sequence using first
strand cDNA as template.
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2.5. Sequence and phylogenetic analyses

Assembly of sequence fragments, sequence confirmation
and amino acid translations were conducted using Vector
NTI ContigExpress (Invitrogen, Carlsbad, CA). Sequence
alignment of the deduced C. tentans CYP4G33 protein
with other CYP4 proteins was performed using ClustalW
[13] within the MEGA3.1 program [14] with default param-
eters. Computer-assisted phylogenetic analysis was con-
ducted with the MEGA3.1 program [14], using the
bootstrapping N–J tree (1000 trials) with the Jones–Tay-

lor–Thornton (JTT) matrix, pairwise deletion of gaps and
missing data, and a uniform rate of evolution. A consensus
tree was obtained which shows all the branches that are
supported at the default cutoff bootstrap confidence limits
(BCL) of P50%.

2.6. Northern blotting

A 1.2 kb fragment corresponding to the cytochrome
P450 family 4 gene isolated from C. tentans was labeled
by direct dioxigenin (DIG)-labeling of DNA fragments

Fig. 1. Full length cDNA sequence of CYP4G33 (Accession No. AY880065) and the conceptual translation of this gene. Both amino acids and nucleotides
are numbered on the left. Gene specific primers used to confirm sequences from RACE PCRs are in bold and amino acids in conserved regions within P450
underlined. Both start codon (atg) and stop codon (taa) are double underlined.
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generated by PCR amplification using the PCR DIG Probe
Synthesis Kit (Roche Biochemical; Mannheim, Germany)
according to the manufacturer’s instructions. Northern blot-

ting was performed with RNA fixed to nylon membranes
(Zeta-Probe; Bio-Rad, Hercules, CA) by capillary transfer
following denaturing formaldehyde agarose electrophoresis

Table 1
Percentage of amino acid identity among 24 insect CYP4 full genes with atrazine inducible CYP4G33 from C. tentans

Insect species Family % Identity Source

Aedes aegypti Similar to CYP4G17a 64 EAT39885
Anopheles gambiae CYP4G17 62 a

Apis mellifera CYP4G11 58 ABB36785
Bombyx mori CYP4G25 58 ABF51415
Leptinotarsa decemlineata CYP4G29 58 AAZ94273
Tribolium castaneum Similar to CYP4G15 57 XP973423
Aedes aegypti Similar to CYP4G16a 56 EAT44585
Anopheles gambiae CYP4G16 56 a

Antheraea yamamai CYP4G25 56 BAD81026
Ips paraconfusus CYP4G27 55 ABF06553
Tribolium castaneum Similar to CYP4G15 isof-1 55 XP966683
Blatella germanica CYP4G19 54 AAO20251
Drosophila melanogaster CYP4G1 54 AAF45503
Drosophila melanogaster CYP4G15 52 AAF76522
Musca domestica CYP4G13 50 AAK40120
Blaberus discoidalis CYP4C1 38 AAA27819
Drosophila melanogaster CYP4C3 36 AAF57098
Coptotermes acinaciformis CYP4U1 35 AAC03111
Mamestra brassicae CYP4L4 34 AAL48300
Manduca sexta CYP4M2 34 AAC21661
Diabrotica virgifera virgifera CYP4AJ1 31 AAF67724

a http://drnelson.utmem.edu/anopheles.fasta.html.

CYP4G16 Aedes aegypti

CYP4G16 Anopheles gambiae

CYP4G15 Drosophila melanogaster

CYP4G25 Antheraea yamamai

CYP4G25 Bombyx mori

CYP4G15 Tribolium castaneum

CYP4G27 Ips paraconfusus

CYP4G29 Leptinotarsa decemlineata

CYP4G11 Apis mellifera

CYP4G19 Blattella germanica

CYP4G15-isof1 Tribolium castaneum

CYP4G13 Musca domestica
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CYP4G33 Chironomus tentans
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Fig. 2. Phylogenetic tree of aligned Chironomus tentans CYP4G33 with other CYP4 sequences from different insect orders. Alignment was performed with
ClustalW within the MEGA 3.1 package. See Section 2 for details of analysis. The numbers close to the nodes correspond to the bootstrap values.
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[15]. Hybridization occurred overnight at 42 �C followed
by three washes at room temperature with a final wash at
68 �C under mild agitation. Luminescent detection was
accomplished using the DIG High Prime Detection Kit
(Roche, Mannheim, Germany) following the manufac-
ture’s instructions. A control probe for an actin gene was
amplified from a C. tentans cDNA mix using the forward
primer, 5 0-TCAGGGTGTGATGGTAGG-3 0 and reverse
primer, 5 0-CTCTTTCTGCTGTGGTGGTG-3 0 to gener-
ate a 560 bp fragment. RNA used in blotting experiments
was extracted as described previously, quantified spectro-
photometrically and standardized loadings were confirmed
by hybridization with an actin probe specific for C. tentans

(Accession No. DQ176317).

3. Results and discussion

3.1. Cloning and sequencing

CYP4 gene fragments corresponding to the 3 0 and 5 0

cDNA ends were successfully cloned, and the overlapping
fragments generated an open reading frame of 1678 bp
with a deduced protein of 559 amino acids (AA) and a pre-
dicted molecular mass of 63.8 kDa (Fig. 1). Gene-specific
primers that flanked most of the ORF resulted in a frag-
ment of the expected size and sequence. The full-length
cDNA of this CYP4 gene has been named CYP4G33 by
the P450 Nomenclature Committee (Accession No.
AY880065). CYP4 genes from several different insect
orders share a high degree of sequence similarity with
CYP4G33 (Table 1) and support its assignment to the
CYP4 P450 family. The highest percent AA identities
(Table 1) were with CYP4G17 (64%) from Aedes aegypti

and CYP4G17 (62%) from Anopheles gambiae, and all
three genes appear to be closely related (Fig. 2).

The deduced AA sequence of CYP4G33 contains impor-
tant domains that are conserved among microsomal P450s
(underlined AAs, Figs. 1 and 3). The P450 protein signa-

ture motif in the heme binding region, FxxGxRxCxG [16]
is present at AA residues 494–503 (Fig.1). The deduced
AA sequence also shares a number of common characteris-
tics with other members of the P450 superfamily, such as
the charge pair consensus (ExxR) [17] within the K-helix,
the consensus (WxxxR) in the C-helix and the consensus
sequence (A/G/E)GxxT) (Figs. 1 and 3) [18,19].

A partial AA sequence alignment in regions conserved
among P450 enzymes indicates a highly conserved AA
sequence that appears as 12 residues (QVDTIM-
FEGHDTT) (354–361). This conserved region is in con-
trast to the 13-residue motif (EVDTFMFEGHDTT)
previously reported as invariant among CYP4 family mem-
bers [20,21]. The differences at positions 354 (E/Q), 356 (D/
G/N), and position 358 (F/I) indicate that this region is less
conserved than previously thought.

3.2. Determination of CYP4 atrazine induction by Northern

blotting

Following atrazine exposure for 90 h at 10 mg/l, mRNA
was isolated from exposed and un-exposed third instar lar-
vae from C. tentans. A single 695 bp mRNA band hybrid-
ized with the actin probe (control) and a 1.9 kb mRNA

Fig. 4. Northern analysis of C. tentans CYP4 expression in induced
(exposed to 10 mg/l atrazine in solution for 90 h) and unexposed 3rd
instars in comparison with C. tentans actin expression in control and
atrazine-exposed 3rd instar larvae.

Fig. 3. Comparison of CYP4G33 to other CYP4 genes in regions conserved among P450 enzymes. Shaded amino acid residues are absolutely conserved in
P450 enzymes and the motif (EVDTFMFEGHDTT) conserved in CYP4 family. Numbers are in reference to CYP4G33 sequence. Amino acids shaded in
black are those that vary among CYP4 P450s.
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band hybridized with the CYP4G33 probe (Fig. 4). The sig-
nal for the CYP4 gene was more intense for atrazine
exposed relative to unexposed midges confirming that cyto-
chrome P450 family 4 gene expression was induced by atra-
zine (Fig. 4). Previous studies employing a partial family 4
sequence as a probe indicated that two P450 family 4 genes
were induced by atrazine [10]. This could be a result of mul-
tiple P450 family 4 genes induced by atrazine or a single
gene with an alternative splicing [19]. The longer probe
used in the present study is likely to have provided a higher
degree of specificity and could explain the detection of a
single band.

3.3. Determination of CYP4 expression levels by Northern

blotting

CYP4G33 expression was compared among the different
developmental stages of C. tentans. A single 695 bp mRNA
band hybridized with the actin probe (control) and a 1.9 kb
mRNA band hybridized with the CYP4 probe in the
Northern blot (Fig 5). A signal of the CYP4 gene was high-
est in all larval stages with much lower expression in adults
and pupae (Fig. 5).

Induction of cytochrome P450 by herbicides and the
consequences to insecticide toxicity are not well docu-
mented. Kao et al. [22] have shown that incorporation of
the herbicides atrazine and 2,4-D into the diet of southern
armyworm (Spodoptera eridania) resulted in induction of
both cytochrome P450 activity and total P450 content
[22]. Additionally, atrazine has been shown to synergize
the toxicity of a number of different insecticides in D. mel-

anogaster [23], although the exact mechanism of this syner-
gism has not been determined.

Insect CYP4 genes are suggested to be involved in toxin
metabolism, and some CYP4 enzymes have been impli-
cated in the metabolism of steroids and xenobiotics [24].
Family 4 cytochrome P450’s exhibit a high degree of struc-
tural diversity and have been identified from numerous
invertebrates, although for most of these enzymes a specific
function has yet to be described [22].

Results from the present research are important because
knowledge of the cytochrome P450 diversity in insects
especially for those species that have potential to serve as
bio-indicators, may provide important tools for future

development of biochemical and molecular markers associ-
ated with adaptation and resistance to chemicals. Our data
suggest that C. tentans CYP4G33 is a reliable marker for
atrazine-exposure at 10 mg/l in this species and provide
some evidence for a role of this protein in pesticide metab-
olism. Future research should test the reliability of this
marker at lower more environmentally relevant concentra-
tions. Given the large number of genes in the CYP super-
family, assigning even putative functions assists in
clarifying the roles of specific proteins (e.g. CYP4G33) in
cellular metabolism. Identification of a specific inducible
cytochrome P450 will improve our understanding of the
molecular and chemical basis of cytochrome P450 family
4 mediated detoxification of atrazine in aquatic organisms.
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