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Environmental heterogeneity is considered to be one of the main factors associated with biodiversity given
that areas with highly heterogeneous environments can host more species due to their higher number of
available niches. In this view, spatial variability extracted from remotely sensed images has been used as a
proxy of species diversity, as these data provide an inexpensive means of deriving environmental
information for large areas in a consistent and regular manner. The aim of this review is to provide an
overview of the state of the art in the use of spectral heterogeneity for estimating species diversity. We will
examine a number of issues related to this theme, dealing with: i) the main sensors used for biodiversity
monitoring, ii) scale matching problems between remotely sensed and field diversity data, iii) spectral
heterogeneity measurement techniques, iv) types of species taxonomic diversity measures and how they
influence the relationship between spectral and species diversity, v) spectral versus genetic diversity, and vi)
modeling procedures for relating spectral and species diversity. Our review suggests that remotely sensed
spectral heterogeneity information provides a crucial baseline for rapid estimation or prediction of
biodiversity attributes and hotspots in space and time.
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1. Introduction collected directly from the field prior to biodiversity assessment.

Inevitably, when sampling species in the field a number of issues need

Finding ecological proxies of species diversity is important for
developing effective management strategies and conservation plans
for natural areas at various spatial scales, whether local (e.g. Osborne
et al., 2007), regional (e.g. Wohlgemuth et al., 2008) or global (e.g.
Rahbek et al., 2007). Species information has traditionally been
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to be solved first, such as: (i) the number of sampling units to be
investigated, (ii) the choice of the sampling design, (iii) the need to
clearly define the statistical population, (iv) the need for an
operational definition of a species community, etc. (Chiarucci,
2007). Furthermore, standardized field sampling or ground surveys,
whether of plant or animal communities, are time-consuming and
costly despite being the most accurate methods for collecting species
diversity data. Therefore, a priori knowledge of areas with higher
diversity means that attention can be focused on them, thus helping to
minimizing monitoring times and costs (e.g. Rocchini et al., 2005).
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The causal relationship between species diversity and environ-
mental heterogeneity has been a long-lasting interest among
ecologists. Environmental heterogeneity is considered to be one of
the main factors associated with a high degree of biological diversity
given that areas with higher environmental heterogeneity can host
more species due to the greater number of available niches within
them (Gaston, 2000; Hortal and Lobo, 2005). Given the difficulties
associated with field-based data collection, the use of remote sensing
for estimating environmental heterogeneity and hence species
diversity is a powerful tool since it provides a synoptic view of an
area with a high temporal resolution (Loarie et al., 2007). For example,
the availability of satellite-derived data, such as those gathered by the
Landsat program, makes it feasible to study all parts of the globe with
a resolution of up to 30 m (Pettorelli et al., 2005; readers are referred
to Tucker et al., 2004 for a description of the Global Land Cover Facility
freely hosting this kind of data). In addition, Open Source systems for
robustly analyzing remotely sensed imagery are now also available
(Neteler and Mitasova, 2008; Neteler et al., 2008).

Spatial variability in the remotely sensed signal, hereafter referred
to as spectral heterogeneity or spectral variability, is expected to be
related to environmental heterogeneity and could therefore be used
as a powerful proxy of species diversity. This is true in light of the
Spectral Variation Hypothesis, which states that the greater the
habitat heterogeneity, the greater the species diversity within it
(Palmer et al., 2000, 2002), regardless of the taxonomic group under
consideration. Besides random dispersal of species (Hubbel, 2001), a
higher heterogeneity of habitats will host a higher number of species
each occupying a particular niche (niche difference model, Nekola and
White, 1999). This hypothesis has been successfully tested with
various taxa, such as vascular plants (e.g. Gould, 2000; Foody and
Cutler, 2006; Levin et al., 2007), lichens (Waser et al., 2004), ants
(Lassau et al., 2005), birds (Bino et al., 2008; St-Louis et al., 2009), and
mammals (Oindo and Skidmore, 2002).

To date, there have been a number of reviews of remote sensing
and geographic information systems (GIS) in biodiversity monitoring
(Kerr and Ostrovsky, 2003; Turner et al., 2003; Pereira and David
Cooper, 2006; Duro et al., 2007; Buchanan et al., 2008; Foody, 2008a;
Gillanders et al., 2008; Gillespie et al., 2008; Boyd, 2009). However,
little work has been explicitly undertaken to review the use of spectral
heterogeneity as a proxy of species diversity. Our aim, therefore, is to
provide an overview of the use of spectral heterogeneity for
estimating species diversity and to examine the advantages and
pitfalls of this approach. Since most of the work has been done using
optical remote sensing we will focus on this type of data. We will
cover a number of issues related to data sources, measuring
techniques and modeling procedures. More specifically, the various
sections will deal with: i) the main sensors used for biodiversity
monitoring, ii) scale matching problems between remotely sensed
and field data, iii) spectral heterogeneity measurement techniques,
iv) types of species taxonomic diversity measures and how they
influence the relationship between spectral and species diversity, v)
spectral versus genetic diversity, and vi) modeling procedures for
relating spectral and species diversity.

2. Remotely sensed data sources for biodiversity monitoring

Monitoring complex ecological systems with spatio-temporal
variations requires sensors that function across a range of temporal,
spectral and spatial resolutions and there is an ongoing debate
concerning the availability of sensors for individuating diversity spots.
There are several drawbacks in using satellite images for biodiversity
assessment (Loarie et al., 2007), including: i) the possible end of key
satellite programs such as the Landsat program, ii) low investment by
public organizations thus delegating satellite development to the
private sector, iii) low temporal resolution. Loarie et al. (2007) focus
on the U.S. Landsat series of satellites and on some of the recent U.S.

commercial satellites with high spatial resolution, such as IKONOS and
QuickBird. There are also a number of parallel observation programs
in other countries which have developed their own satellite systems,
such as Canada, China, India, Japan, Russia, Brazil, Israel, South Korea
and Taiwan, as well as multi-national programs such as those
developed by the European Union (Kark et al., 2008). Nagendra and
Rocchini (2008) provide a nearly complete list of sensors available for
biodiversity monitoring including those with high spatial (IKONOS,
Orbview-3, BGIS-2000 (Ball's Global Imaging System-2000)) and
spectral resolution (CHRIS (Compact High Resolution Imaging
Spectrometer), Hyperion, GLI (Global Imager), MERIS (Medium
Resolution Imaging Spectrometer), and MODIS (Moderate Resolution
Imaging Spectrometer)).

It is worth pointing out that two satellite programs will soon
provide additional global datasets. Firstly, NASA and the USGS have
announced the Landsat Data Continuity Mission and the launch of
Landsat 8, which is scheduled for December 2012 (Loveland et al.,
2008), contrary to the doubts expressed by Loarie et al. (2007). This
mission will be slightly enhanced by two thermal channels, but is
aimed mainly at continuing the acquisition of data at the same spatial
and temporal scale as the previous missions. Secondly, the German
Space Agency (DLR) is planning to launch a new hyperspectral
satellite called EnMAP in 2012 (Stuffler et al., 2007; Guanter et al.,
2009). EnMAP will have a spatial resolution comparable to that of the
Landsat (30 m) mission but is planned to cover the visible, near- and
short-wave infrared wavelengths with more than 200 channels. This
will combine the spatial resolution of Landsat with the power of
hyperspectral information. In most cases, depending on the scale and
the habitat being studied, the characteristics of the sensor being
adopted are crucial, as spatial and spectral resolutions may strongly
impact the results of biodiversity estimation using remotely sensed
heterogeneity. Read et al. (2003) have recently demonstrated the
power of using data at resolutions of up to 1 m, such as IKONOS, for
identifying individual trees in Amazonian forests and proposing
effective management procedures, overcoming the obvious limita-
tions related to previous landscape- to regional-scale satellite
programs.

When medium spatial resolutions (some tens of meters) are used
for ecological studies, a single pixel often encompasses a number of
individual trees or plants, sometimes even crossing habitat bound-
aries (Small, 2004; Nagendra et al., 2010). Thus each pixel
corresponds to a mixed averaged signature. However, when aiming
to predict community level diversity using remotely sensed hetero-
geneity in reflectance, the devil is in the detail (Nagendra and
Rocchini, 2008). In fact, in some cases the need for high spatial
resolution data is only apparent. Put differently, it is not always true
that smaller pixel dimensions increase the accuracy of biodiversity
assessment, particularly when the distribution of individual plants or
trees constitutes a mixture of spatial objects overlapping at multiple
spatial scales (Nagendra, 2001). When pixel dimensions shrink below
the size of the object studied, to a point where the pixels are smaller
than the size of individual tree crowns, for instance, variability in the
signatures of pixels covering the same individual tree suddenly
increases (Ricotta et al., 1999; Song and Woodcock, 2002; Stickler and
Southworth, 2008). In other words, in some circumstances high
spatial resolution actually confounds the issue by increasing the level
of intra-class variation and introducing spatial heterogeneity resulting
from in-shadow pixels.

For example, thanks to its higher spectral resolution, Landsat ETM +
(6 bands used, ca. 30 m spatial resolution) performed similarly to
QuickBird (4 bands in the multispectral channels, 2.88 m spatial
resolution) in predicting species richness in a wetland area (Rocchini,
2007). In fact, despite the mixed pixel effect related to the simultaneous
presence of water and vegetation, the higher spectral resolution of
Landsat allowed the acquisition of important information in the middle
infrared portion (also referred to as short-wave infrared, with two bands
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at 1555-1750 nm and 2080-2350 nm) of the electromagnetic spec-
trum, otherwise lost with QuickBird, which extends spectrally only to
the near infrared (760-900 nm). A similar comparison between Landsat
and IKONOS (4 m spatial resolution, 4 bands in the multispectral
channels) was made by Nagendra et al. (2010). They looked at the use of
medium and high resolution satellite images for assessing vegetation
diversity in a dry tropical Indian forest and found that Landsat
performed better than IKONOS across a range of measures of vegetation
diversity. Likewise, Stickler and Southworth (2008) found that an
ecological prediction model for a forested ecosystem in Uganda based
on Landsat ETM + data outperformed the model based on QuickBird

Table 1

data (Table 1). They suggested that this could have serious implications
for future habitat modeling, biodiversity analyses and conservation
studies, especially given the prior assumption that better (i.e. finer)
spatial resolution is necessarily superior. Indeed, all these researchers
found spectral information to be much more important in studies of
biodiversity than the improved spatial but reduced spectral dimensions
associated with high spatial resolution sensors.

In some cases, decreasing performance with increasing spatial
resolution of remotely sensed data may be a limitation of the pixel-
based approaches which have been criticized in several papers, which
have instead proposed object-oriented approaches as tools for

Summary of the progress made in modeling local alpha-diversity and beta-diversity by remote sensing. While alpha-diversity accounts for local species richness or abundance within
each sampling unit, beta-diversity is related to species compositional turnover among sampling units. The table is ordered first by modeling procedure complexity and then by year
of publication. With respect to alpha-diversity, notice that we have not separated studies dealing with local species richness and abundance since the focus is mainly on the modeling

procedures. Further information is provided in the main text: refer to the column “Section of this review where the issue is discussed”.

Aim Modeling procedure
techniques

Improvements over previous

Section of this review where the issue
is discussed

Example studies (together with
habitat types and country)

Alpha-diversity modeling Simple univariate regression
(local species richness ~ models incorporating as
and local species explanatory variable the
abundance estimation) variation of single bands or

vegetation indices

Use of continuous spectral

Univariate regression models First attempt to model species
testing images with different diversity at different spatial

spatial and spectral scales

resolutions

Univariate regression models First use of hyperspectral

using high spectral resolution imagery for predicting species
data richness and abundance using

univariate statistics

Locally weighted methods Local variation can be
such as geographically
weighted regression or local
smoothing surfaces
(LOWESS, also known as

LOESS)

an aspatial Ordinary Least
Square regression

Generalized Additive Models
(GAMs) and Partial Least

Square (PLS) regression heterogeneity

Use of regression models and Explicit mapping of uncertainty
in species diversity prediction by

further mapping of local
species richness estimates
and bias

spectral variability

Neural networks for
predicting species richness
and abundance

sensing data

Beta-diversity modeling
(estimation of turnover
in species composition
with increasing spectral distance
distance between sites)

Correlations (measured with
the Mantel test) between

Use of spectral distances

instead of relying on local
estimates

Quantile regression applied
to species beta diversity
estimation (spectral distance

decay) using different quantile

thresholds of the input data

Beta-diversity mapping First attempt to map beta-

diversity, assumed as the change

rate on two DCA (Detrended

Correspondence Analysis) axes

heterogeneity information for
estimating species diversity

appropriately modeled using
local spatial methods rather than

Multiple regression models
including spectral continuous

Tentative use of methods other
than regression for predicting
species diversity from remote

between sampling units for
species turnover and spectral estimating turnover in species
composition over large areas

Use of spectral instead of spatial
distance between sampling units
for estimating species turnover

“5. Relating spectral heterogeneity to
species taxonomic diversity” and “7.
Relating spectral heterogeneity to
species diversity: modeling procedures,
issues and future challenges”

“2. Remotely sensed data sources for
biodiversity monitoring”

“2. Remotely sensed data sources for
biodiversity monitoring”

“7. Relating spectral heterogeneity to
species diversity: modeling procedures,
issues and future challenges”

“7. Relating spectral heterogeneity to
species diversity: modeling procedures,
issues and future challenges”

“7. Relating spectral heterogeneity to
species diversity: modeling procedures,
issues and future challenges”

“5. Relating spectral heterogeneity to
species taxonomic diversity”

“5. Relating spectral heterogeneity to
species taxonomic diversity”

“5. Relating spectral heterogeneity to
species taxonomic diversity” and “7.
Relating spectral heterogeneity to
species diversity: modeling procedures,
issues and future challenges”

“7. Relating spectral heterogeneity to
species diversity: modeling procedures,
issues and future challenges”

Palmer et al. (2002, prairie vegetation,
Oklahoma, USA) Gillespie (2005,
tropical dry forests, Florida, USA)
Kumar et al. (2006, prairie vegetation,
Colorado, USA) Levin et al. (2007,
Mediterranean vegetation, Israel)

Rocchini (2007, wetlands, Italy)
Stickler and Southworth (2008,
tropical forests, Uganda)

Lucas and Carter (2008, woodlands,
marshes, meadows and transition
zones, northern Gulf of Mexico)
Oldeland et al. (2010, highland
savannas, Namibia)

Foody (2005, Great Britain, whole
country) Nagendra et al. (2010,
tropical dry forests, India)

Parviaininen et al. (2009, boreal
forests, Finland) Fava et al. (2010,
alpine meadows, northern Italy)

Gould (2000, tundra, Arctic Region,
Canada) Oindo and Skidmore (2002,
savanna grasslands and highland
moors, Kenya)

Foody and Cutler (2003, Bornean
tropical rainforests, Malaysia)

Tuomisto et al. (2003, Amazonian
rainforest, Ecuador) He and Zhang
(2009, Worldwide WWEF Ecoregion
database)

Rocchini et al. (2009, tropical dry
forests, India)

Feilhauer and Schmidtlein (2009,
walnut-fruit forests, Kyrgyzstan/
Central Asia.)
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generating patches in an objective manner at a given specified scale,
by maintaining the topological and hierarchical structure of the
landscape over multiple scales (Hay et al., 2001; Burnett and Blaschke,
2003; Marignani et al., 2008; Blaschke, 2010). For example, Karl and
Maurer (2010) found higher correlations between IKONOS imagery
and field-measured cover with object-based methods than with pixel-
based methods. The difference evened out with medium spatial
resolution imagery such as Landsat. This suggests, therefore, i) that
object-oriented approaches may in some cases be superior to pixel-
based approaches, but also ii) that the noise in the reflectance
detected by a hyperspatial sensor may create problems in discrim-
inating objects.

As a rule of thumb, the higher the spectral resolution (higher
number of bands) the higher the power to discriminate objects which
reflect in a different manner, i.e. the power to detect the heterogeneity
of an area. With respect to plant diversity, for example, different
species respond differently to light in the electromagnetic spectrum,
so that if the number of spectral bands is large enough and the band
width is narrow enough to discriminate these responses efficiently,
then increased spectral heterogeneity should correspond to an
increase in the capacity to identify areas of high biodiversity
(Nagendra, 2001). Of course, it is crucial to identify the bands that
really matter in heterogeneity and diversity studies and to carry out
comparative research with those bands.

Since it is expensive to develop remote sensors which have both
high spectral and high spatial resolution, there are very few research
studies looking at these newer satellite products. While the use of
hyperspectral satellite imagery for predicting species diversity is
available for some regional studies, basically using low spatial
resolution sensors such as MODIS (ca. 250 m to 1km spatial
resolution, e.g. Saatchi et al.,, 2008; He and Zhang, 2009), hyperspec-
tral data with higher spatial resolution have only recently become
more readily available. For example, the use of Hyperion (ca. 30 m,
220 bands) satellite imagery has proven successful for detecting
biodiversity in tropical dry forest (Kalacska et al., 2007). There have
also been some studies using airborne hyperspectral sensors to
predict species richness on a more detailed scale (ca. 20 m spatial
resolution), such as the AVIRIS, a 224 channel hyperspectral data cube
providing a coverage range of 400-2500 nm at approximately 10 nm
per channel (Carter et al., 2005; Carlson et al., 2007). An expensive but
powerful tool is the airborne imaging spectrometer HyMap that
measures reflectance in 128 bands covering the 440-2500 nm
spectral region with a spectral bandwidth between 10 nm and
20 nm and a spatial resolution of ca. 3-5 m. One of the first attempts
to use HyMap for predicting species diversity dates back only to 2008,
when Lucas and Carter (2008) used it to predict local plant species
richness in the woodlands, marshes, meadows, and transition zones of
Horn Island (Mississippi, northern Gulf of Mexico) within transects at
15 m resolution. HyMap has also been used for predicting plant
species diversity, with respect to both richness and abundance, at a
very high spatial resolution (as high as 10 m) in African savannas
(Oldeland et al., 2010, Table 1). However, these types of sensors are
available only for well-funded research programs with explicit
financial support for remote sensing techniques and implementations
and, as such, may be too expensive for large scale applications.

There remains a glaring gap in the ready availability of high spatial
and spectral resolution data across the world (Goetz, 2007; Gillespie
et al., 2008). This gap is especially prominent in tropical biodiversity
hotspots, where the need for biodiversity assessment and monitoring
is perhaps the most critical (Kark et al., 2008). There are huge costs
associated with developing and manufacturing high spatial and
spectral resolution sensors, and there are inevitable tradeoffs between
spectral and spatial resolution and temporal coverage, when the
immense sizes of the datasets involved, the time taken to download
them, and the difficulties involved with data storage are taken into
account. Therefore, an increase in the resolution of one attribute, such

as spectral resolution, often leads to the sacrifice of other attributes,
such as temporal or spatial resolution. The increased cost of such
imagery also puts it out of the reach of many ecologists (Gillespie
et al., 2008) especially those located in developing countries where
the need is greatest (Nagendra and Rocchini, 2008).

3. Scale matching problems between remotely sensed and
field data

Spatial scale has long been recognized as a critical factor influencing
species diversity measurements and estimates (Arrhenius, 1921;
Gleason, 1922; Connor and McCoy, 1979; Palmer and White, 1994;
Stohlgren et al., 1997), and is thus a potential factor controlling, even if
not explicitly, its measurement and estimate (Levin, 1992). Scale cannot
be defined unequivocally as its meaning varies according to context.
Generally the “scale concept” is separated into spatial extent, i.e. the
whole area under study, and grain or spatial resolution, i.e. the
dimension of field sampling units or pixels (Dungan et al., 2002).
Scale matching problems are defined here as the issues related to grain,
deriving from the superimposition of field sampling units and the pixels
used for calculating the spectral variability within them.

Finding a perfect match between remotely sensed images and
species diversity sampling units is difficult. Obviously, pixels should
be smaller than the sampling units, at least when calculating local
spectral heterogeneity for local species diversity estimates. Nonethe-
less, as previously stated, when pixels with a very high spatial
resolution (e.g. a ground spatial distance of ~1 to 5m) are used,
shadows create a higher spatial heterogeneity among spectra leading
to more noise than information (Nagendra and Rocchini, 2008;
Stickler and Southworth, 2008). On the other hand, a lower spatial
resolution may limit the ability to represent the actual heterogeneity
due to information smoothing processes which can hinder the
detection of fine-grained patterns. Quoting Turner et al. (2003), “the
challenge for the researcher is to ensure that the scale of the imagery
matches that of the species richness data and that both are scaled
appropriately for the theory being tested”.

Pixels by their very nature are expected to be mixed (Fisher, 1997;
Small, 2004). Obviously, the coarser the pixel the greater the sub-pixel
heterogeneity that cannot be detected, since each pixel corresponds
to an average of actual reflectances. It is worth remembering that the
signal of any given pixel actually arises mainly as a result of
contributions from objects lying within them (Fisher and Pathirana,
1990; Cracknell, 1998). From a statistical point of view, local spectral
variability, i.e. the spatial variability of reflectances, should reach its
maximum when the pixel spatial dimensions approximately equal
that of the scene objects under consideration. Local spectral variability
should decrease as the pixel dimensions become larger or smaller
(Woodcock and Strahler, 1987; Song and Woodcock, 2002; Chen and
Henebry, 2009), as the correlation between neighboring pixels
decreases and local variability rises (Ricotta et al., 1999).

An inappropriate match of satellite spatial resolution and grain
size of field data may hide actual spatial heterogeneity with sub-pixel
variability remaining undetected (Small, 2004; Rocchini, 2007).
Multiple scales of analysis would therefore increase the probability of
detecting a possible correlation between species diversity and
spectral variability (Foody, 2004; Stickler and Southworth, 2008).
Hence, confining sampling designs to single scale units may hide
important processes operating at other, unconsidered scales (Stohlgren
et al, 1997; Kalkhan et al., 2007). Kumar et al. (2009), for example,
found butterfly species richness to be related to the range in the
Normalized Difference Vegetation Index (NDVI) together with land-
scape metrics at multiple spatial scales demonstrating that some
patterns may be revealed only at specific spatial scales while remaining
hidden at others. Multi-scale sampling designs have also been shown
to be able to detect fine- to coarse-grained patterns of species diversity
(Nagendra and Gadgil, 1999). In particular, given the same remotely
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sensed pixel dimensions, increasing the dimensions of the sampling
units will strengthen the relationship between species diversity and
spectral variability (Palmer et al., 2002; Rocchini et al., 2004; Oldeland
et al, 2010). In fact, a larger size in the field allows several pixels to
be taken into consideration for the calculation of spectral hetero-
geneity, thus maintaining extreme values and avoiding smoothing
effects.

Finally, species richness in a given sampling unit or at a given site
may depend not only on local habitat patterns but also on the
characteristics of the surrounding landscape. Recently, it has been
shown that the incorporation of spectral information derived from the
landscape surrounding sampling units significantly improves both the
explanatory power and the cross-validation statistics of the models
linking species to spectral diversity (Parviainen et al., 2009). In fact,
the surrounding landscape of a local site may increase the available
resources or provide additional resources that occur to only a limited
extent within the local site.

4. Techniques used for measuring spectral heterogeneity

The heterogeneity of a landscape can be measured in a number of
ways. Most of the remote sensing research applied to landscape
ecology has relied on image classification and on the application of
landscape metrics (Southworth et al., 2004). These methods allow
proper measures of heterogeneity linked to a particular spatial
structure (e.g. patch shape, Kumar et al., 2006, or landscape
connectivity, Oster et al., 2007), instead of relying only on spectral
compositional heterogeneity. Moreover, they allow considering land
use change which has been proven to be one of the major drivers of
species diversity together with climate change (e.g. Luoto et al., 2005).
For instance, using known relationships between certain species
groups and land cover, it is possible to assess the diversity of those
species that do not directly impact on the remotely sensed response,
such as insects and birds (Foody, 2008a). This is especially useful when
the objects composing land cover maps have been generated by
agglomerative methods based on objective algorithms such as image
segmentation (see also section “2. Remotely sensed data sources for
biodiversity monitoring”). Reviews of this issue can be found in Hay
et al. (2001) and Blaschke (2010) while Marignani et al. (2008) and
Karl and Maurer (2010) provide empirical examples of their
application in land cover mapping.

Nonetheless, a number of problems arise when trying to create
abrupt thresholds (boundaries) for identifying explicit spatial units
such as patches (Foody, 2002, 2008b), leading some researchers to ask
explicitly if a landscape can actually be viewed as crisp, with abrupt
boundaries (Southworth et al., 2004; Rocchini and Ricotta, 2007). In
fact, as long as the defined classes contain a high degree of spectral
mixture, the end-members, i.e. pixels occupied solely by one cover type,
do not accurately represent actual ecological patterns (Townshend
et al., 2004). This has inevitably led to the application of several
techniques based on robust theoretical backgrounds for classifying
images while avoiding Boolean memberships, relying essentially on
mixture modeling (Small, 2005; Okeke and Karnieli, 2006; Shanmugam
et al,, 2006; Nichol and Wong, 2007; Bino et al., 2008) or on fuzzy
classification (Foody, 1996; Woodcock and Gopal, 2000; Leyk and
Zimmermann, 2007; Rocchini and Ricotta, 2007; Fisher, 2009; Rocchini,
2010).

Furthermore, the processing of remote sensing data can lead to
loss of information (Palmer et al., 2002; Schwarz and Zimmermann,
2005), this being especially true when dealing with ecological data.
For example, Southworth et al. (2004) used continuous data based on
NDVI gradients to model landscape fragmentation of forests in
Honduras and showed that more information is retained when
using continuous data instead of relying only on boundary thresh-
olding for building land cover maps. From this perspective, spectral
heterogeneity based on non-classified reflectance values of pixels in

remotely sensed images track variability over landscapes, which are
by nature continuously variable (Gillespie et al., 2008).

The simplest measure of spectral heterogeneity per sampling unit is
based on measures of dispersion, such as the standard deviation or the
coefficient of variation calculated for n pixels overlapping or occurring in
the immediate neighborhood of each sampling unit. Examples include
dispersion measures based on vegetation indices such as NDVI (e.g.
Gould, 2000; Oindo and Skidmore, 2002; Gillespie, 2005; Lassau et al.,
2005; Levin et al., 2007) or on each band or on one principal component
(e.g. Carter et al,, 2005; Lucas and Carter, 2008; see also “7. Relating
spectral heterogeneity to species diversity: modeling procedures, issues and
future challenges”). However, this requires researchers to select single
bands or to reduce the multispectral data set, using conventional
ordination methods such as principal component analysis and selecting
one component, or using band combinations (e.g. NDVI). On the other
hand, each multispectral image is formed by a number of bands each of
which may contain significant information for discriminating objects
and may provide more reliable measures of spectral heterogeneity. An
example is presented in Fig. 1. In such cases, each pixel can be viewed as
a point in a spectral space where each band is an axis. Calculating the
distance from the spectral centroid, for example, allows a measure of
heterogeneity in a multiple coordinate spectral system to be obtained.
Empirical examples are shown in Fig. 1 and can also be found in Palmer
et al. (2002), Rocchini (2007) and Oldeland et al. (2010).

Note that the aforementioned measures only take one scale (grain)
of the analysis into consideration (see “3. Scale matching problems
between remotely sensed and field diversity data”). Hence they may

3-band IMAGE

Colour view

Fig. 1. Pixels composing a remotely sensed image can be viewed as points in a spectral
space whose axes are represented by the bands composing the image. This example
shows a three-band image. Gray-scale colors of each band derive from their Digital
Numbers (DNs). Each pixel can be plotted in a spectral space with coordinates defined
by its DNs in each band (axis). The local spectral heterogeneity of an area (e.g. a
sampling unit) can be measured from the dimensions of the cloud of pixels in the
aforementioned spectral space. This example shows a sampling unit composed of 9
pixels; the mean distance from the spectral centroid (black point) is used as a measure
of spectral variability.
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hamper the ability to detect relations between spectral heterogeneity
and species diversity which may be found at different spatial scales
(Stohlgren et al., 1997). Statistical techniques based on ecological
theory, which are used for calculating species diversity at different
spatial scales, may therefore be easily translated into spectral diversity
measurements. For example, rarefaction is a robust statistical procedure
allowing the quantification of the number of species or individuals given
a certain sampling effort in terms of the number of sampling units or the
area investigated (e.g. Gotelli and Colwell, 2001; Koellner et al.,, 2004).
Once pixel values rather than species presences are considered,
rarefaction may be profitably used for estimating the number of spectral
values accumulated given a certain number of sampling units. For
example, Rocchini et al. (2008) compared different biogeographical
regions in Swiss Alpine landscapes and demonstrated that, while at the
local scale there were no differences in species diversity and spectral
diversity among regions, differences became apparent when a wider
extent was considered, thus promoting rarefaction as a powerful multi-
scale method for measuring species and spectral diversity.

The measure of spectral heterogeneity being applied depends on
the final goal of a study. In some cases, only local diversity patterns
may be of interest while, in other cases, diversity gradients over large
areas are involved, such as in regional and global scale studies. This is
related to the concepts of alpha- and beta-diversity that we will
discuss in the next sections.

5. Relating spectral heterogeneity to species taxonomic diversity

As previously stated, most of the studies relating spectral
heterogeneity to species diversity have concentrated on local species
richness (alpha-diversity, see Table 1 and Rocchini, 2007 and
references therein), and especially on presence/absence data, leaving
out species abundance. Recently, Oldeland et al. (2010), in a study on
plant species diversity in African savannas, relied on relative
abundances of species, as measured in this case by the Shannon
index H=—}_ pxIn(p), where p is the relative proportion of each
species. They demonstrated that taking relative abundances of species
into account improves the ability of hyperspectral remotely sensed
data to detect local species diversity. This is mainly due to the fact that
the Shannon index is less affected than species richness by the
presence of rare species, which represent a relatively incidental set of
species of a more ‘disperse’ origin (Ricotta et al., 2008). From an
ecological point of view, this observation is directly related to the
Grime's (1998) mass ratio hypothesis. According to Grime (1998),
immediate control over ecosystem processes, such as water balance
and nutrient cycles, depends primarily on the functional character-
istics of the most abundant species, which are generally better suited
to the abiotic environment of the study site; by contrast, rare species
are a relatively incidental set of species that are more variable in their
functional characteristics compared with common species. Hence, the
ecological implications of the most abundant species make the
Shannon index a powerful tool for relating spectral and species
diversity at a local scale, taking species abundance into account
instead of relying solely on local richness. A similar example using
neural networks instead of linear regression can be found in Foody
and Cutler (2003, Table 1). Further mathematical details on
abundance-based metrics can be found in Nagendra (2002), Ricotta
(2005a) and Gorelick (2006).

Nonetheless, while local diversity measures are a useful tool for
detecting diversity hot spots at the local scale, they provide no
information on differences between species-rich sites in terms of
turnover in species composition (beta-diversity). Overall, high local
diversity values together with a high compositional turnover across
sites leads to high diversity within the whole study area (regional
diversity or gamma-diversity, Vellend, 2001; Chao et al., 2005;
Rocchini et al., 2005; Tuomisto and Ruokolainen, 2006; Bacaro and
Ricotta, 2007; He and Zhang, 2009). Beta-diversity can be defined as a

beta-diversity
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Fig. 2. Given the same local (alpha) diversity, different levels of beta-diversity
(compositional turnover) can be obtained depending on the amount of “intersection” in
species composition in the sampling units. In this example there are two sampling units
and alpha equals nine species. Each filled point represents one species. As the
intersection between the sampling units decreases beta-diversity increases until it
reaches its maximum value once sampling units do not share any species. The Jaccard-
based beta-diversity measure is reported in this example. Refer to the main text for a
more detailed explanation of the Jaccard coefficient. A similar set-based representation
can be found in Chao et al. (2005).

combination of regional gamma-diversity and average local alpha-
diversity. This combination can be either multiplicative B =7/«
(Whittaker, 1972) or additive B=7vy—a (Lande, 1996). In both
cases, high species turnover among sites results in increasingly higher
beta-diversity values (Ricotta, 2005b).

A straightforward method for summarizing beta-diversity consists
in looking at the differences between pairs of plots in terms of their
species composition using one of the many possible (dis)similarity
coefficients proposed in the ecological literature (Legendre and
Legendre, 1998; Podani, 2000; Koleff et al., 2003). As a rule of
thumb, if plot-to-plot similarity is computed using a normalized
measure ranging between 0 and 1, such as the Jaccard coefficient
Ci=a/(a+b +c), for single pairs of plots beta-diversity is directly
related to dissimilarity and can be rewritten as B=1—C; (Fig. 2).
Here, the letters refer to the traditional 2 x 2 contingency table: a is
the number of species present in both plots, representing the
intersection between plots, b is the number of species present solely
in the first plot and absent from the second plot, and c is the number of
species present solely in the second plot (Vellend, 2001; Koleff et al.,
2003).

According to the first law of geography: “everything is related to
everything else, but near things are more related than distant things”
(Tobler, 1970). Consequently, species turnover should increase with
increasing spatial distance (Nekola and White, 1999). This can
generally be empirically tested by plotting the semi-matrix of species
composition similarity between pairs of sampling units against the
corresponding semi-matrix of spatial distances (Fig. 3).

Substituting ecological distances for spatial ones in modeling
distance decay, “hidden” patterns in species composition may be
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Fig. 3. According to the niche difference model, species similarity is expected to decrease with increasing spatial distance. This can be empirically tested by plotting semi-matrices of
compositional similarity between pairs of sampling units versus the corresponding spatial distances. The steeper the slope of the curve, the higher the beta-diversity of the area
studied. This example shows nine sampling units resulting in 36 pair-wise distances. In some cases, spatial distances do not necessarily account for environmental heterogeneity,
especially in heavily fragmented landscapes. Substituting spatial distances with spectral-based distances (e.g. Fig. 1) among sampling units may, therefore, be more reliable as this
method explicitly takes “habitat distances” into account. Refer to the main text for some empirical examples.

discovered that are only weakly related to the plot-to-plot spatial
distances. For example, Tuomisto et al. (2003), in a study of plant
diversity in Amazonia, found that spatial distance accounted for only a
small fraction of variance in species similarity, while environmental
variation, measured by both soil properties and spectral distance in a
Landsat TM image, accounted for a much larger variance (Table 1).
When using spatial distances, distance decay does not necessarily
account for environmental heterogeneity (Palmer, 2005), especially in
heavily fragmented landscapes. Thus, the use of spectral distances for
summarizing beta-diversity patterns may be more reliable as this
method explicitly takes “habitat distances” into account instead of
mere spatial distances between sites. It is therefore expected that the
higher the spectral distance between sites, the higher their differences
in terms of occurring habitats and hence of occurring species (higher
beta-diversity). This has been demonstrated at a number of spatial
scales and in several habitat types, ranging from locally scaled studies
in Mediterranean forests (Rocchini and Cade, 2008), Amazonian
tropical forests (Tuomisto et al., 2003 ), Western Ghats (India) tropical
forests (Krishnaswamy et al., 2009), tropical dry forests (Rocchini et
al., 2009), North and South Carolina (US) lowlands and floodplains
(He etal., 2009), and African savannas (Rocchini et al., 2010), to global
worldwide assessments (He and Zhang, 2009).

6. Relating spectral heterogeneity to species-specific
genetic variation

As discussed above, most biodiversity studies on spectral hetero-
geneity have focused on taxonomic-based (alpha- or beta-) diversity.
However, this approach is susceptible to a problem known as
taxonomic inflation, i.e. the elevation of infraspecific taxa to the

rank of species, which is one of the main reasons for the rapidly
increasing numbers of species in certain groups (Isaac et al., 2004;
Knapp et al., 2005). Moreover, Bacaro et al. (2009) demonstrated that,
at local scale, the subjectivity of field biologists in acquiring species
lists is expected to increase error variance instead of improving
information on actual community diversity, resulting in huge
differences in their assessments of species presence/absence. Quoting
the authors: “If this kind of problem is extended to a broader-scale
biodiversity monitoring program, the number of unobserved species
could jeopardize the whole set of results.”

Surprisingly, other ways for measuring biodiversity have largely
been neglected in spectral heterogeneity studies. For example, genetic
variation is the basic level of biodiversity, influencing both speciation
and the adaptive response of organisms to environmental change
(Szathmary et al., 2001; Gienapp et al., 2008). Thus, effective
strategies for conserving biodiversity require a good understanding
of environmental impacts on genetic diversity (the amount of genetic
variation) and genetic structure (the spatial distribution of genetic
variation). Refer to Lowe et al. (2004) and to Keyghobadi (2007) for a
review on the matter.

Approaches that estimate spectral diversity can contribute to this
kind of research in several ways. Firstly, boundary detection methods
can be applied to spectral diversity-related maps (see section “4.
Techniques used for measuring spectral heterogeneity”), and the
resulting boundary zones could be statistically compared with
discontinuities in the genetic data (Sacks et al., 2004; Segelbacher
et al., 2008). Similarly, spectral data can help to model resistance
surfaces which are used to estimate the effective resistance of the
landscape to gene flow (Spear et al., 2005; Cushman et al., 2006;
McRae and Beier, 2007). For example, Leimgruber et al. (2001) and
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Mueller et al. (2008) showed that the NDVI was a good predictor of
movement and foraging dynamics in Mongolian gazelles (Procapra
gutturosa), so that NDVI-based estimators of landscape resistance
could help to elucidate gene flow in this species.

Spectral data could also be used to test the effects of local
environmental conditions on genetic connectivity. Several studies
have shown that gene flow can be influenced by environmental
similarity between areas, as migrants prefer to settle in locations
similar to the habitat they were born and raised in (Geffen et al., 2004;
Pilot et al., 2006). Again, spectral measures of environmental diversity
can improve such studies because they can provide a multivariate and
holistic measure of local environmental characteristics. Clearly, these
spectral estimates of environmental diversity could also be applied in
studies of genetic diversity to test whether more heterogeneous
environments harbor individuals or populations with greater genetic
diversity. Indeed, spectral data could be a convenient way of
characterizing individual sampling localities or entire landscapes in
terms of their environmental characteristics, and could therefore
greatly facilitate broad-scale and data-intensive studies in adaptive
landscape genetics (Joost et al, 2007; Holderegger et al., 2006;
Holderegger and Wagner, 2008).

As previously stated, an important advantage of remotely sensed
images is that they can cover large spatial extents in a short period of
time, i.e. they have a high temporal information content (e.g.
Southworth et al., 2006). This would seem to be of particular value
to genetic data, as several studies have demonstrated the effect of
landscape history on genetic variation (e.g. Landergott et al., 2001 for
ferns; Keyghobadi et al., 2005 for butterflies; Holzhauer et al., 2006 for
crickets; Zellmer and Knowles, 2009 for wood frogs). Thus, the
acquisition of images of the same areas over multiple points in time
can lead to a better understanding of past versus present environ-
mental influences on genetic diversity and structure.

Overall, combining spectral data with data on neutral or adaptive
genetic variation has tremendous potential for biodiversity research.
However, much more research is needed to combine the different
data, methods and theories in effective and meaningful ways (Storfer
et al., 2007; Balkenhol et al., 2009a, 2009b). Furthermore, most
genetic studies focus on only one or two species of a certain taxa,
which currently limits their relevance for general biodiversity
assessments. We hope that our review will encourage researchers
from different disciplines to become involved in this exciting new
research avenue.

7. Relating spectral heterogeneity to species diversity:
modeling procedures, issues and future challenges

Once i) the focus of the analysis has been defined (e.g. estimation
of taxonomic or genetic diversity), i) scale problems have been taken
into account, and iii) proper field and remote sensing data have been
acquired, the next crucial step in the analytical process is to choose an
appropriate modeling technique. Most papers dealing with estimation
of local species richness or abundance by spectral heterogeneity have
relied on simple univariate regression models incorporating as
explanatory variable the variation of single bands or vegetation
indices, with generally low but significant determination coefficients
(e.g. Palmer et al., 2002; Rocchini et al., 2004; Kumar et al., 2006;
Oldeland et al., 2010, see even section “4. Techniques used for
measuring spectral heterogeneity”). In fact, it is difficult to obtain a
strong relationship between single predictors and species diversity in
a univariate regression space. This is true even when using methods
other than ordinary least square regression, such as geographically
weighted regression (Foody, 2005), quantile regression (Rocchini and
Cade, 2008), or locally weighted smoothing surfaces (LOWESS,
Nagendra et al., 2010, Table 1).

Some studies have used remotely sensed information in multiple
regression models, although most of them have relied on heteroge-

neity in topography, climate, geology and land cover maps (e.g. Hortal
et al.,, 2004; Maggini et al., 2006; Wohlgemuth et al., 2008) instead of
using continuous spectral information. This may be because discussion
of results obtained from the former variables is relatively straightfor-
ward compared with spectral variables. Moreover, high multi-
collinearity in the spectral response in different wavebands is
expected (Hernandez-Stefanoni and Dupuy, 2007; Nagendra et al.,
2010). In other words, multispectral remote sensing data often have
extensive inter-band correlations, although this can be solved by data
reduction techniques which extract principal gradients contained
within a dataset and discard minor components with little explanatory
value. For example, Minimum Noise Fraction (MNF, Green et al., 1988),
Principal Component Analysis (PCA, Ricotta et al., 1999) or Principal
Coordinate Analysis (PcoA, He et al., 2009) take linear transformations
of a set of numerical variables to create a new variable set with
principal components/coordinates reciprocally uncorrelated and
ordered in terms of the amount of variance explained with respect
to the original data. They have been shown to be an efficient way of
reducing multidimensional spectral sets for species diversity estima-
tion models (e.g. Rocchini, 2007; Fava et al., 2010). Moreover, all these
techniques provide an effective visual tool for showing graphically the
spectral variability of study plots in an ordination space (e.g. He et al.,
2009). Alternatively, some interesting attempts have been made to fit
continuous spectral variables within multiple regression models,
which rely on partial least square regression (PLSR) or on non-
parametric versions of GLMs (Generalized Linear Models) known as
GAMs (Generalized Additive Models). For example, both PLSR and
GAM s have been useful in estimating plant species richness based on
vegetation indices and their derivatives (e.g. Parviainen et al., 2009;
Fava et al., 2010, Table 1).

Regardless of the model applied to remotely sensed data for
estimating species diversity, a final interesting output would be the
spatial visualization of the estimation of species diversity by applying
model-derived coefficients to remotely sensed imagery (Oindo and
Skidmore, 2002; Feilhauer and Schmidtlein, 2009; Parviainen et al.,
2009). Although predictive mapping is mainly related to species
distribution models (e.g. Guisan and Zimmermann, 2000; Saatchi et al.,
2008), there are some cases of species diversity mapping based on
remotely sensed data (e.g. Gould, 2000; Oindo and Skidmore, 2002;
Hernandez-Stefanoni and Dupuy, 2007). While these studies used
mapping procedures based on local estimators of species richness
(alpha-diversity), Feilhauer and Schmidtlein (2009) provided a
straightforward method for mapping species richness and relative
abundance (alpha-diversity) as well as species complementarity
(beta-diversity). Based on a multiple regression model incorporating
topographical variables together with NDVI, they estimated and
mapped alpha- and beta-diversity. Beta-diversity mapping, in partic-
ular, was based on a model where the response variable (beta-
diversity) was assumed as the change rate on two DCA (Detrended
Correspondence Analysis) axes (Table 1).

When forecasting diversity maps, making an estimate of the
uncertainty in the model used is highly recommended (e.g. Hortal
et al., 2004). For example, residual maps in estimates of species
richness may be used to provide a robust quality assessment of the
maps being presented (Gould, 2000; Oindo and Skidmore, 2002;
Hernandez-Stefanoni and Dupuy, 2007, Table 1). Uncertainty is
considered a fundamental concept in most of the ecological models
used to date, such as species distribution modeling (Luoto et al., 2005;
Heikkinen et al., 2006; Hortal, 2008), ecological gradient mapping
(Foody, 1996; Fisher, 2000), habitat resource modeling (Cade et al.,
2005), environmental management decision making (Fuller et al.,
2008), and species-area relationships (Guilhaumon et al., 2008;
Dengler, 2009). Several new modeling techniques are now available
which explicitly take into account uncertainty as an input to the model
and not only as an output statistic (e.g. Bayesian techniques, Ellison,
2004; Clark, 2005). Refer to Ricotta and Anand (2006) for a complete
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description of probabilistic and non-probabilistic uncertainty mea-
sures used in ecology.

8. Conclusion

Assessment of biodiversity at local and regional scales often relies
on fieldwork-based data collection (Ferretti and Chiarucci, 2003).
Species assessment in relatively large areas has always been a
challenging task for ecologists, mainly because of the intrinsic
difficulty in judging the completeness of the resulting species lists
and in quantifying the sampling effort (e.g. Palmer, 1995). Invento-
rying species over a large region is complicated by the fact that field
biologists cannot inspect every individual in the region as well as by
species composition changes over time (e.g. Robinson et al., 1994;
Kirby and Thomas, 2000; Palmer et al., 2002). Therefore, different
methods have been put forward for identifying the environmental
gradients that explain the maximum change in species richness (e.g.
Gillison and Brewer, 1985; Hortal and Lobo, 2005).

It is becoming increasingly important to develop means of rapidly
and objectively forecasting species diversity using a few easily
measured environmental variables in order to assess, with limited
resources, the impacts of anthropogenic and natural disturbances on
biodiversity. In this review we have extensively examined the pros
and cons of using spectral heterogeneity as a replicable method for
predicting species diversity and we recommend that future research
prioritize the following challenging issues. Firstly, remote sensing
data sources and techniques are being rapidly developed, but
quantitative tests need to be carried out to assess diversity using
these data and techniques. For example, object-oriented methods
have been largely used for landscape mapping but not for diversity
estimation. Secondly, improving theoretical and empirical measure-
ments of beta-diversity by remote sensing should help to find the
ecological gradients shaping diversity on a large spatial scale.
Furthermore, studying genetic structure at the landscape scale is a
promising field of research which could provide us with a better
understanding of species dispersal and gene flow across habitats.
Finally, different statistical and map-based modeling procedures have
been proposed for predicting biodiversity by remote sensing
(Table 1), but these should not be more complex than the reality
they are seeking to represent (Ginzburg and Jensen, 2004). However,
as discussed in this review, diversity is a complex ecological
phenomenon and requires the implementation of modeling techni-
ques appropriate to the study being carried out. Further research
should, therefore, focus on developing models which can effectively
represent the object under investigation but with streamlined
procedures.

We are aware that the use of spectral heterogeneity as a proxy of
species diversity also has its limitations, particularly in the conserva-
tion and management of biodiversity. Simple measures of species
diversity in biology, and habitat diversity in landscape ecology, have
been criticized because diversity contains no information on the
actual species composition of a community or the habitat composition
of a landscape (Luoto et al., 2004). Habitat diversity estimated by
spectral heterogeneity is a landscape summary measure that does not
take into account the uniqueness or potential ecological importance of
different habitats. Furthermore, there are situations where increasing
habitat diversity may contradict management objectives with regard
to threatened species that require large and homogeneous habitat
patches of a specific type, since low or intermediate levels of
fragmentation can lead to higher heterogeneity (Hanski, 2005).

On the other hand, remotely sensed spectral heterogeneity
information offers an inexpensive means to derive spatially complete
environmental information for large areas in a consistent and regular
manner. For this reason, spectral heterogeneity may provide a
valuable “first filter” estimate for the location of species hotspots
and the prediction of spatial patterns of biodiversity.
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